(Dr. Stefan Sandfeld)

This course provides a concise introduction to continuum mechanics including vector and tensor calculus. This is one of the foundations for comprehending the finite element method (FEM), which will be derived in a way that is appropriate for solving solid mechanics problems. In this course we focus on introducing all the fundamental steps (formulation of balance equations, constitutive equations, discretization, setting up the weak form, numerical integration, assembling the stiffness matrix) for FEM solution of small-strain elastic deformation problems. The course is accompanied by hands-on tutorials where the students learn how to implement the lecture content in their own python finite-element routines and at the same time deepen their understanding of the lecture content. At the end of this course the students will have written a fully functional FEM program, which we then use to study benchmark systems and to simulate different mechanical systems. A critical review of their own results will help the students to understand strengths and limitations of the FEM simulation tools.
Prerequisite for this course is basic knowledge of python